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Abstract It is well known that the hydrodynamic limit of an interacting particle system
satisfying a gradient condition (such as the zero-range process or the symmetric simple
exclusion process) is given by a possibly non-linear parabolic equation and the equilibrium
fluctuations from this limit are given by a generalized Ornstein-Uhlenbeck process.

We prove that in the presence of a symmetric random environment, these scaling limits
also hold for almost every choice of the random environment, with an homogenized diffu-
sion coefficient that does not depend on the realization of the random environment.

Keywords Random environment · Zero-range process · Hydrodynamic limit · Equilibrium
fluctuations · Boltzmann-Gibbs principle

1 Introduction

Consider a system of particles evolving on a multidimensional, periodic integer lattice of
period 2N . Each particle performs a continuous-time random walk with rates p(x, y) that
depend on both the position x and the destination site y. These rates are chosen as a fixed
realization of a random field, in such a way that the resulting single-particle random walk is
reversible with respect to the counting measure on the lattice. We call these rates the random
environment.

Particles interact between them only when they share a site, through an interaction func-
tion g : N0 → R+. The dynamics for this system is the following. At each time t , let ηt (x)
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denote the number of particles at the site x. For each pair of sites 〈x, y〉, after an exponential
waiting time of rate g(ηt (x))p(x, y) the particle at site x jumps to the site y. This is done
independently for each pair 〈x, y〉 and after each jump, the exponential waiting time for each
pair 〈x, y〉 starts afresh.

Such a system can be understood as a model for diffusion in heterogeneous media. The
purpose of this article is to study the scaling limits of this system as N → ∞ and mostly
the influence of the randomness in this limit. As we will see, when the underlying random
field is ergodic, stationary and satisfies an ellipticity condition, for any realization of the ran-
dom environment the scaling limit depends on the randomness only through some constants
which depend on the distribution of the random transition rates, but not on the particular
realization of the random environment.

In this article we study two related scaling limits for this process: the hydrodynamic
limit and the equilibrium fluctuations. The first one is a law of large numbers for the empir-
ical distribution of particles when the process starts from a configuration of particles with
macroscopic density close to some initial profile, while the second one is a central limit the-
orem for the empirical distribution of particles when the system starts from an equilibrium
measure.

The hydrodynamic limit has been obtained in the context of exclusion processes in [4]
when the dimension d ≥ 3 and in [16] for any dimension. In these references, it is not
assumed the reversibility of the one-particle random walk with respect to the counting mea-
sure on the lattice, so in this sense their results are more general than ours. Their approach
is based on a generalization of the non-gradient method of Varadhan [15, 18] for the case of
random transition rates. In [3, 10] the one-dimensional simple exclusion process is consid-
ered. In the reversible situation, the hydrodynamic limit has been obtained in [7] for the case
of a one-dimensional Ginzburg-Landau process. His approach is based in a priori bounds
for an associated parabolic problem.

In this article we treat the reversible situation, where we introduce the corrected empir-
ical process. This corrected process satisfies the gradient condition, which is a key prop-
erty from which hydrodynamics and equilibrium fluctuations can be easily obtained like
in the non-random situation [2, 9]. The introduction of a corrected empirical measure can
be understood as a version of Tartar’s compensated compactness lemma in the context of
particle systems. In this reversible situation the averaging due to the dynamics and the in-
homogeneities introduced by the random media factorize after introducing the corrected
empirical process, in such a way that we can average them separately. For the dynamic av-
eraging, we use the entropy method of [9] to derive the hydrodynamic limit, while for the
equilibrium fluctuations we adopt Chang’s proof of the Boltzmann-Gibbs principle [2]; for
the averaging of the random environment we use �-convergence. With this procedure, the
scaling limits of the corrected empirical process are obtained. After this, we prove that in
the limit as N → ∞, the corrected empirical process and the original empirical process are
close enough to recover the scaling limit for the original empirical distribution of particles.

At this point we should stress that our results on the hydrodynamic limit of the zero-
range process can also be obtained adapting the methods of [4, 7, 16]; we have chosen
the zero-range process for didactical reasons, in order to not cover the arguments under
deep technical proofs. In [8], a kinetically constrained particle system is discussed. For
that particular model, the previous works can not be adapted (at least not in an immediate
way). But considering the corrected empirical measure, the hydrodynamic limit in random
environment is easily reduced to the usual case without random environment. For another
application of the corrected empirical measure, see [5, 10].

In order to see how far this picture can be carried out, we also prove the Boltzmann-Gibbs
principle for local functions that depend on both the particle configuration and the random
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environment. Notice that this more general version of the Boltzmann-Gibbs principle is not
needed to obtain the equilibrium fluctuations for the empirical density of particles.

The Boltzmann-Gibbs principle states that non-conserved quantities oscillate faster than
conserved quantities, and therefore when averaged in time, only the projections over the
density field are observed. As a consequence, the Boltzmann-Gibbs principle is interest-
ing by its own. In order to give further motivations for the study of the Boltzmann-Gibbs
principle for random functions, we present two applications at the end of the article.

The article is structured as follows. In Sect. 2 we describe the model and state the main
results. Section 3 is devoted to the proof of the hydrodynamic limit for this process and in
the subsequent section we present the proof of the equilibrium fluctuations. The proof of the
Boltzmann-Gibbs principle is referred to Sect. 5. For the reader’s convenience, we include
some well-known, but rather technical lemmas and definitions in Appendices A and B.

2 Notations and Results

2.1 The Zero-Range Process

We define the zero-range process as a continuous-time Markov process ηt with state space
�d

N = {η : T
d
N → N0}, where T

d
N is the d-dimensional discrete torus N−1

Z
d/2NZ

d . We
consider T

d
N as a subset of Ud = [−1,1]d with periodic boundary conditions. This process

has a generator whose action over local functions f : �d
N → R is given by

LNf (η) =
∑

x,y∈TN

pN(x, y)g
(
η(x)

)[
f (ηxy) − f (η)

]
,

where pN : T
d
N × T

d
N → R+ is the jump rate of a random walk in T

d
N , g : N0 → R+ is the

interaction rate between the particles and ηxy ∈ �d
N is given by

ηxy(z) =
⎧
⎨

⎩

η(x) − 1, z = x,

η(y) + 1, z = y,

η(z), z �= x, y.

Notice that the dynamics of ηt conserves the number of particles. In particular, the
process ηt is well defined for any initial configuration η0 ∈ �d

N , since in that case the state
space is finite.

We will assume that the interaction rate g has linear growth:

∃c0 > 0 : c−1
0 n ≤ g(n) ≤ c0n, ∀n ∈ N0. (2.1)

We will also assume that the motion of a single particle is a nearest-neighbor random
walk, so we take pN(x, y) = 0 if |x − y| �= 1/N , where |x − y| =∑i≤d |xi − yi | is the sum
norm in R

d . This last hypothesis is not essential, but it simplifies the notation. We further as-
sume that pN(x, y) = pN(y, x) for all x, y ∈ T

d
N . This hypothesis will ensure the reversibil-

ity of the process ηt with respect to the measures νρ defined below, and the reversibility of
the random walk generated by pN(x, y), which is crucial in what follows.

For each α ≥ 0, let ν̄α be the product measure in �d
N whose marginals are given by

ν̄α

{
η;η(x) = k

}= 1

Z(α)

αk

g(k)! ,



694 P. Gonçalves, M. Jara

where g(k)! = g(1) · · ·g(k) for k ≥ 1, g(0) = 1 and Z(α) is the normalizing constant for
which ν̄α(�

d
N) = 1. By the linear growth of g (2.1), ν̄α is well defined for all α ≥ 0.

Define ρ = ρ(α) as the density of particles with respect to ν̄α , namely:

ρ(α) = Eν̄α

[
η(x)

]=
∑

k≥0

1

Z(α)

kαk

g(k)! = αZ′(α)

Z(α)
.

Again by the linear growth of g, α → ρ(α) is an homeomorphism from [0,∞) to [0,∞)

and the inverse function α = α(ρ) is well defined for all ρ ∈ [0,∞). We define νρ = ν̄α(ρ)

and φ(ρ) = Eνρ [g(η(0))]. Due to the symmetry of pN(x, y), the measure νρ is invariant and
reversible for this process.

2.2 The Random Environment

Now we discuss the choice of the jump rates pN(x, y). Let (X ,F,P ) be a probability space
and take a family {θx;x ∈ Z

d} of F -measurable mappings θx : X → X such that

(i) P (θ−1
x A) = P (A) for all A ∈ F , x ∈ Z

d .
(ii) θzθz′ = θz+z′ for all z, z′ ∈ Z

d .
(iii) If θzA = A for all z ∈ Z

d , then P (A) = 0 or 1.

In this case we say that the family {θx}x∈Zd is invariant and ergodic under P . Let a =
(a1, . . . , ad) : X → R

d be a F -measurable function such that there exists ε0 > 0 with

ε0 ≤ ai(ω) ≤ ε−1
0 for all ω ∈ X and i = 1, . . . , d. (2.2)

Fix ω ∈ X . For each x ∈ {−1 + 1/N,−1 + 2/N, . . . ,1}d and i = 1, . . . , d , define

pN(x, x + ei/N) = pN(x + ei/N,x) = N2ai(θNxω) (2.3)

to which we call the random environment.
For each G : T

d
N → R, define the operator LNG by

LNG(x) =
∑

y∈T
d
N

pN(x, y)
[
G(y) − G(x)

]
.

In the space of functions lN (Td
N ) = {f : T

d
N → R}, define the following norms:

‖f ‖2
0,N = 1

Nd

∑

x∈T
d
N

f (x)2

and

‖f ‖2
1,N = ‖f ‖2

0,N + 1

Nd

∑

x,y∈T
d
N|x−y|=1/N

N2
[
f (y) − f (x)

]2
.

We denote by L2
N the space of functions lN (Td

N ) endowed with the norm ‖ · ‖0,N and by
〈·, ·〉N the inner product in L2

N . Define H1,N as the space of functions in lN (Td
N ) endowed

with the norm ‖ · ‖1,N .
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Denote by L2(Ud) the space of square integrable functions in Ud with respect to the
Lebesgue measure and by ‖ · ‖0 the corresponding norm in L2(Ud). For each k ≥ 1, denote
by Hk(U

d) the Sobolev space in Ud defined as the completion of C∞(Ud) under the norm

‖f ‖2
k =

∑

|α|≤k

‖∂αf ‖2
0,

where |α| denotes the order of the multi-index α and ∂α is the partial derivative of order α.
The definition of convergence of a sequence fN ∈ H1,N (or L2

N ) to f ∈ H1(U
d)

(or L2(Ud)) is given in Appendix B.1.
From the homogenization theory the following holds:

Proposition 2.1 Fix a typical realization of pN(·, ·) and λ > 0. There exists a positive de-
fined matrix A that depends only on the distribution of a = (a1, . . . , ad) such that for any
fN and f such that fN ∈ H−1,N converges strongly to f ∈ H−1(U

d), uN converges weakly
in H1,N to u, where uN is defined as the solution of the equation

λuN(x) − LNuN(x) = fN(x)

and u is the solution of the equation

λu(x) − ∇ ·A∇u(x) = f (x).

A proof of this proposition can be found in [14]. Notice that the statement of this propo-
sition makes sense for any choice of the jump rate pN(x, y).

In order to prove the hydrodynamic limit we need this property on the jump rates
pN(x, y) and for this reason we introduce the following definition.

Definition 2.2 We say that a family of jump rates {pN : T
d
N × T

d
N → R+}N admits homog-

enization, if there exist a constant ε0 > 0 such that ε0N
2 ≤ pN(x, y) ≤ ε−1

0 N2 and a matrix
A such that for any f ∈ H−1(U

d) smooth enough there exists a sequence fN converging
strongly in H−1,N to f such that the solution uN ∈ H1,N of the equation

λuN(x) − LNuN(x) = fN(x)

converges weakly in H1,N to the solution u ∈ H1(U
d) of

λu(x) − ∇ ·A∇u(x) = f (x).

In this case, we say that the matrix A is the �-limit of LN .

For our purposes, f will be smooth enough if it is three times continuously differentiable.

Remark 2.3 By the theory of �-convergence, the matrix A satisfies the coerciveness as-
sumption ε0|ξ |2 ≤∑ij ξiξjAij ≤ ε−1

0 |ξ |2 for all vectors ξ ∈ R
d . In the previous definition,

nothing excludes the possibility of the matrix A to be a function of the position x ∈ Ud . See
[13] for a one-dimensional example on which the �-limit of LN is not constant in space.
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2.3 Hydrodynamic Limit

Fix a function ρ0 : Ud → R+. A family of measures {μN }N≥1 in �d
N is said to be associated

to the profile ρ0 if for any function G ∈ C(Ud) and any ε > 0,

lim
N→∞

μN

(
η ∈ �d

N ;
∣∣∣∣

1

Nd

∑

x∈T
d
N

η(x)G(x) −
∫

ρ0(x)G(x)dx

∣∣∣∣> ε

)
= 0.

Here and in the sequel, denote by EμN
the expectation with respect to μN and by EμN

the expectation with respect to PμN
, the distribution of the process ηt starting from μN in

D([0, T ],�d
N). We follow the evolution of the process ηt in a finite time interval [0, T ] in

order to avoid uninteresting complications due to the lack of compactness of [0,∞).
Let ρ > 0 be a fixed density. The entropy of μN with respect to νρ is defined by

HN(μN |νρ) =
{∫

dμN

dνρ
log dμN

dνρ
dνρ, if μN � νρ ,

+∞, otherwise,

where for two measures μ and ν, μ � ν means that the measure ν is absolutely continuous
with respect to μ.

We introduce a partial order � in �d
N as follows. For η, η′ in �d

N , we say that η � η′ if
η(x) ≤ η′(x) for every x ∈ T

d
N . Once there is a partial order in the space state �d

N , we can
introduce a partial order in the space of measures in �d

N . We say that μN is stochastically
dominated by νρ (also denoted by μN � νρ ) if there exists a measure μ̄ in �d

N × �d
N such

that:

(i) For all η ∈ �N , μ̄(η,�N) = μN(η).
(ii) For all η ∈ �N , μ̄(�N,η) = νρ(η).

(iii) The set {(η, η′);η � η′} has full measure under μ̄.

In this case we say that μ̄ is a coupling of μN and νρ̄ .

Theorem 2.4 Let ρ0 : Ud → R be a bounded profile, and let {μN }N≥1 be a sequence of
measures in �d

N associated to the profile ρ0. Assume that the interaction rate g(·) is non-
decreasing and has linear growth (see Sect. 2.1). Suppose that there exist constants K0 and
ρ̄ such that H(μN |νρ̄) ≤ K0N

d and μN � νρ̄ for every N large enough. Suppose also that
the jump rates pN(x, y) admit homogenization with homogenized matrix A.

Then, for every t ≤ T , every continuous function G : Ud → R and every δ > 0,

lim
N→∞

PμN

[∣∣∣∣
1

Nd

∑

x∈T
d
N

G(x)ηt (x) −
∫

G(u)ρ(t, u)du

∣∣∣∣> δ

]
= 0,

where ρ(t, u) is the unique weak solution of the hydrodynamic equation

{
∂tρ = ∇ · (A∇φ(ρ)),

ρ(0, ·) = ρ0(·). (2.4)

In the sake of completeness we introduce the definition of weak solutions of (2.4).
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Definition 2.5 Fix a bounded profile ρ0 : Ud → R. A bounded function ρ :
[0, T ] × Ud → R is a weak solution of (2.4) if for every function G : [0, T ] × Ud → R

of class C1,2([0, T ] × Ud),

∫ t

0

∫

Ud

{
ρ(s,u)∂sG(s,u) + φ

(
ρ(s,u)

)∇ ·A∇G(s,u)
}
duds +

∫

Ud

ρ0(u)G(0, u)du

=
∫

Ud

ρ(T ,u)G(T ,u)du. (2.5)

Let M+ be the set of positive Radon measures in Ud . The empirical measure πN
t is

defined as the process in D([0, T ],M+) given by

πN
t (du) = 1

Nd

∑

x∈T
d
N

ηt (x)δx(du),

where δx is the Dirac distribution at x.
For G : Ud → R continuous, define πN

t (G) = ∫ G(u)πN
t (du). The statement of Theo-

rem 2.4 is equivalent to say that under PμN
the random variables πN

t (G) converge in prob-
ability to

∫
G(u)ρ(t, u)du for every G continuous and every t ∈ [0, T ]. We will prove a

stronger result for πN
t :

Theorem 2.6 Under the hypothesis of Theorem 2.4, πN
t converges in distribution in

D([0, T ],M+) to the trajectory ρ(t, u)du.

Remark 2.7 Since ρ(t, u)du is a deterministic element of D([0, T ],M+), the convergence
in distribution of πN

t implies its convergence in probability, from which Theorem 2.4 fol-
lows.

2.4 Equilibrium Fluctuations

Now we state a central limit theorem for the empirical measure, starting from an equilibrium
measure νρ . Fix ρ > 0 and denote by S(Ud) the Schwartz space of infinitely differentiable
functions in Ud .

Denote by YN· the density fluctuation field, a linear functional acting on functions
G ∈ S(Ud) as

YN
t (G) = 1

Nd/2

∑

x∈T
d
N

G(x)
(
ηt (x) − ρ

)
. (2.6)

Notice that

YN
t (G) = Nd/2

(∫
G(u)πN

t (du) − ρ

∫
G(u)du

)
.

In this way we have defined a process in D([0, T ],S ′(Ud)), where S ′(Ud) is the space of
tempered distributions, which corresponds to the dual of the Schwartz space S(Ud).

Theorem 2.8 Consider the fluctuation field YN· defined above. Assume that the interaction
rate g(·) has linear growth and that the jump rates admit homogenization with homogenized
matrix A.
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Then, for every t1, . . . , tk ∈ [0, T ] and every G1, . . . ,Gk ∈ S(Ud), the vector
(YN

t1
(G1), . . . ,YN

tk
(Gk)) converges in distribution to (Yt1(G1), . . . ,Ytk (Gk)), where Yt is the

generalized Ornstein-Uhlenbeck process of characteristics φ′(ρ)∇ ·A∇ and
√

φ(ρ)A∇ .

3 Proof of Theorem 2.4

By Remark 2.7, in order to prove Theorem 2.4 it is enough to prove Theorem 2.6. The proof
of Theorem 2.6 follows the standard lines of the proof of hydrodynamic limit by the entropy
method for interacting particle systems. The route to proceed is the following:

First we show that the distributions of πN
t in D([0, T ],M+) form a tight sequence. Then

we prove that the limit points of πN
t are concentrated on trajectories of measures absolutely

continuous with respect to the Lebesgue measure in Ud with a bounded density. Finally, we
prove that these limit points are concentrated on weak solutions of the hydrodynamic (2.4).
By the uniqueness of these weak solutions on the space of bounded functions we conclude
that πN

t has a unique limit point, concentrated on the trajectory with density ρ(t, u), where
ρ(t, u) is the weak solution of (2.4). Since the topology of convergence in distribution is
metrizable, we conclude that the whole sequence πN

t converges to ρ(t, u)du.
Unfortunately, this plan cannot be accomplished directly for πN

t , but for another auxiliary
process, the corrected empirical measure, that we define below.

Let λ > 0 be fixed. A function G : Ud → R is said to be regular if the function fN ∈ L2
N

defined by fN(x) = λG(x) − ∇ · A∇G(x) converges strongly in H−1,N to λG − ∇ · A∇ .
Notice that a sufficient condition for G to be regular, is G ∈ C3(Ud), where C3(Ud) denotes
the space of three times continuously differentiable functions on Ud .

Let G : Ud → R be regular. For each N ≥ 1, define RλG(x) = λG(x) − ∇ · A∇G(x)

and Gλ
N : T

d
N → R as the solution of

λGλ
N(x) − LNGλ

N(x) = RλG(x). (3.1)

By Lemma B.1, the following estimates hold:

‖Gλ
N‖0,N ≤ λ−1‖RλG‖0,N , (3.2)

1

Nd

∑

x,y∈TN

pN(x, y)
[
Gλ

N(y) − Gλ
N(x)

]2 ≤ λ−1‖RλG‖2
0,N (3.3)

and

‖Gλ
N‖∞,N ≤ λ−1‖RλG‖∞,N . (3.4)

We define the corrected empirical measure π
N,λ
t by

πN,λ
t (G) = 1

Nd

∑

x∈T
d
N

ηt (x)Gλ
N(x).

Notice that π
N,λ
t (G) is defined only for G regular, so π

N,λ
t is not a well defined process in

D([0, T ],M+). Lemma B.1 shows that π
N,λ
t is a well defined process in the Sobolev space

H−k(U) for k ≥ 3. However, this point will not be relevant for our proof of Theorem 2.6.
Since M+ is separable and the vague topology in M+ is metrizable, in order to prove

tightness of πN
t in D([0, T ],M+), it is enough to show tightness of πN

t (G) in D([0, T ],R)
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for G in a dense subset of the set C(Ud) of continuous functions in Ud . Therefore, it is
enough to prove tightness of πN

t (G) for G regular.
By Dynkin’s formula,

MN
t (G) = πN,λ

t (G) − π
N,λ
0 (G) −

∫ t

0

1

Nd

∑

x∈T
d
N

g
(
ηs(x)

)
LNGλ

N(x)ds (3.5)

is a martingale of quadratic variation given by

〈
MN

t (G)
〉=
∫ t

0

1

N2d

∑

x,y∈T
d
N

g
(
ηs(x)

)
pN(x, y)

[
Gλ

N(y) − Gλ
N(x)

]2
ds.

We claim that MN
t (G) goes to 0 as N → ∞ in L2(PμN

). In fact,

EμN

[
MN

t (G)2
] = EμN

[〈
MN

t (G)
〉]

=
∫ t

0

1

N2d

∑

x,y∈T
d
N

EμN

[
g
(
ηs(x)

)]
pN(x, y)

[
Gλ

N(y) − Gλ
N(x)

]2
ds

≤ tφ(ρ̄)

Nd
λ−1‖RλG‖2

0,N

N→∞−→ 0.

In order to obtain this last bound, we have used the estimate (3.3), the fact that μN is sto-
chastically dominated by νρ̄ and Proposition A.1.

To prove tightness for the martingale MN
t (G), we use the following criterion, due to

Aldous:

Proposition 3.1 A sequence of probability measures {PN }N in D([0, T ],R) is tight if

(i) For all 0 ≤ t ≤ T and for all ε > 0 there exists a finite constant A such that
supN PN(|xt | > A) < ε,

(ii) For all ε > 0,

lim
δ→0

lim sup
N→∞

sup
τ∈T
β≤δ

PN

(|xτ+β − xτ | > δ
)= 0,

where T is the set of stopping times with respect to the canonical filtration, bounded
by T .

A proof of this lemma can be found in [11]. In our case, condition (i) follows from the
fact that MN

t (G) converges to 0 in L2(PμN
) and Tchebyshev’s inequality. On the other hand,

by Doob’s optimal sampling theorem, we have that

PμN

[∣∣MN
τ+β(G) −MN

τ (G)
∣∣> ε

]

≤ 1

ε2
EμN

[〈
MN

τ+β(G)
〉− 〈MN

τ (G)
〉]

≤ 1

ε2
EμN

[∫ τ+β

τ

1

N2d

∑

x,y∈T
d
N

g
(
ηs(x)

)
pN(x, y)

[
Gλ

N(y) − Gλ
N(x)

]2
ds

]
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≤ βC(G,c0, λ, ε0)

Nd−2
EμN

[
1

Nd

∑

x∈T
d
N

η(x)

]
.

In this last bound we have used the conservation of the number of particles, the estimate
(3.3), and the uniform bound for pN(x, y). Since the expected initial density of particles is
bounded by ρ̄, condition (ii) follows.

Notice that the integral term in (3.5) can be written as

∫ t

0

1

Nd

∑

x∈T
d
N

g
(
ηs(x)

)[
λGλ

N(x) − RλG(x)
]
ds. (3.6)

We see that

EμN

[
sup

|s−t |≤δ

∣∣∣∣
∫ t

s

1

Nd

∑

x∈T
d
N

g
(
ηt ′(x)

)[
λGλ

N(x) − RλG(x)
]
dt ′
∣∣∣∣
2]

≤ δC(G,g)EμN

[
sup

t∈[0,T ]
‖ηt‖2

0,N

]
,

that goes to 0 as δ → 0, uniformly in N by Lemma A.2. Therefore, by Arzelà-Ascoli
criterion, the integral terms in (3.5) form a tight sequence in D([0, T ],R) and their limit
points are concentrated on continuous trajectories. By (3.5) the sequence π

N,λ
t (G) is tight

in D([0, T ],R). On the other hand, since MN
t (G) goes to 0 in L2(PμN

), any limit point
of MN

t (G) has null finite-dimensional distributions. Therefore, MN
t (G) converges to 0 in

distribution as a process in D([0, T ],R). Consequently, the limit points of π
N,λ
t (G) are con-

centrated on continuous trajectories.
Notice now that

EμN

[
sup

t∈[0,T ]

∣∣πN,λ
t (G) − πN

t (G)
∣∣2
]

≤ ‖Gλ
N − G‖2

0,NEμN

[
sup

t∈[0,T ]
‖ηt‖2

0,N

]
.

By Proposition 2.1, ‖Gλ
N − G‖0,N converges to 0 as N → ∞, and by Lemma A.2

EμN
[supt ‖ηt‖2

0,N ] is bounded in N . Therefore, supt |πN,λ
t (G) − πN

t (G)| → 0 in L2(PμN
).

A simple ε/3 argument allows us to obtain from this result that πN
t (G) is also tight in

D([0, T ],R) and that πN
t (G) and π

N,λ
t have the same limit points. Since the set of regular

functions is dense in C(Ud), this ends the proof of tightness for πN
t in D([0, T ],M+).

Let πt be a limit point of πN
t , and let Q be its distribution in D([0, T ],M+). For any

positive function G ∈ C(Ud),

Q
(
πt (G) > M

) ≤ lim inf
N→∞

Q
(
πN

t (G) > M
)

= lim inf
N→∞

μN

(
N−d

∑

x∈T
d
N

ηt (x)G(x) > M

)

≤ lim inf
N→∞

νρ̄

(
N−d

∑

x∈T
d
N

η(x)G(x) > M

)

≤ 1
(∫

G(u)du > M/ρ̄

)
.



Scaling Limits for Gradient Systems in Random Environment 701

Here we have used once more, the fact of μN being stochastically dominated by an
invariant measure νρ̄ and Proposition A.1.

Therefore, if 0 ≤ G ≤ 1 then Q(πt (G) > 2d ρ̄) = 0. By the dominated convergence the-
orem, for every closed B ⊆ Ud it holds that Q(πt (B) > ρ̄�(B)) = 0, where � denotes
the Lebesgue measure in Ud . In particular, the process πt is concentrated on measures ab-
solutely continuous with respect to �.

Let π(t, u) be the density of πt with respect to �. The same estimates prove that π(t, u)

is bounded by ρ̄ in [0, T ] × Ud .
Notice that RλG is a smooth function, but λGλ

N(x) it is not smooth. However,

EνN

[∣∣∣∣
∫ t

0

1

Nd

∑

x∈T
d
N

g
(
ηs(x)

)[
Gλ

N(x) − G(x)
]
ds

∣∣∣∣
2]

≤ c−2
0 t

∫ t

0
EμN

[(
1

Nd

∑

x∈T
d
N

ηs(x)
∣∣Gλ

N(x) − G(x)
∣∣
)2]

ds

≤ c−2
0 t2

∫ (
1

Nd

∑

x∈T
d
N

η(x)
∣∣Gλ

N(x) − G(x)
∣∣
)2

dνρ̄(η)

≤ c−2
0 t2

∫
η(0)2dνρ̄‖Gλ

N − G‖2
0,N

N→∞−→ 0.

In the previous we used Schwarz inequality together with the translation invariance of
νρ̄ . As a consequence,

MN
t (G) = πN,λ

t (G) − π
N,λ
0 (G) −

∫ t

0

1

Nd

∑

x∈T
d
N

g
(
ηs(x)

)∇ ·A∇G(x)ds (3.7)

plus a rest vanishing in L2(PμN
) as N → ∞. The next result will allow us to write the

integral term (3.6) as a function of πN
t plus a vanishing term as N → ∞.

Proposition 3.2 (Replacement Lemma) For every δ > 0,

lim sup
ε→0

lim sup
N→∞

PμN

[∫ T

0

1

Nd

∑

x∈T
d
N

VεN(ηs, x)ds > δ

]
= 0,

where

Vl(η, x) =
∣∣∣∣

1

(2l + 1)d

∑

|y|≤l

g
(
η(x + y)

)− φ
(
ηl(x)

)∣∣∣∣ and

ηl(x) = 1

(2l + 1)d

∑

|y|≤l

η(x + y).
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The proof of this proposition is the same as the one presented in Chap. 5 of [11], so we
omit it. Using this proposition, we see that for any continuous function G : Ud → R,

∫ t

0

1

Nd

∑

x∈T
d
N

{
g
(
ηs(x)

)− φ
(
ηεN

s (x)
)}

G(x)ds → 0

in PμN
-probability as N → ∞ and then ε → 0. On the other hand, since ηεN

s (x) =
πN

s (1(|u − x| ≤ ε)), we conclude that

∫ t

0

1

Nd

∑

x∈T
d
N

g
(
ηs(x)

)
G(x)ds →

∫ t

0
ds

∫
φ
(
π(s,u)

)
G(u)du

in PμN
-probability. Since MN

t (G) converges to 0, taking N → ∞ in (3.7) we obtain that

0 =
∫

π(t, u)G(u)du −
∫

ρ0(u)G(u)du −
∫ t

0

∫
φ
(
π(s,u)

)∇ ·A∇G(u)duds (3.8)

for every G regular. Approximating a twice-differentiable function G by regular functions
Gn in the uniform topology, we extend this identity to functions G ∈ C2(Ud).

Let G : [0, T ] × Ud → R be of class C1,2. Take the partition {ti = T i/n; i = 0, . . . , n} of
the interval [0, T ] and define Gn : [0, T ] × Ud → R by

Gn(t, u) = n(ti − ti−1)

T
G(ti−1, u) + n(ti − t)

T
G(ti, u),

for t ∈ [ti−1, ti]. In general, for a piecewise-differentiable path G : [0, T ] → L2
N ,

πN
t (Gt) − πN

t (G0) −
∫ t

0

{
πN

s (∂sGs) + 1

Nd

∑

x∈T
d
N

g
(
ηs(x)

)
LNGs(x)

}
ds

is a martingale of quadratic variation

∫ t

0

1

N2d

∑

x,y∈T
d
N

pN(x, y)g
(
ηs(x)

)[
Gs(y) − Gs(x)

]2
ds.

Repeating the arguments in the proof of (3.8) for Gn, we conclude that

0 =
∫

π(t, u)Gn(t, u)du −
∫

ρ0(u)Gn(0, u)du

−
∫ t

0

∫ {
π(s,u)∂sGn(s, u) + φ

(
π(s,u)

)∇ ·A∇Gn(s,u)
}
duds.

Taking the limit as n goes to ∞, we obtain that

0 =
∫

π(t, u)G(t, u)du −
∫

ρ0(u)G(0, u)du

−
∫ t

0

∫ {
π(s,u)∂sG(s,u) + φ

(
π(s,u)

)∇ ·A∇G(s,u)
}
duds
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for every G : [0, T ] × Ud → R of class C1,2. This is the weak form of the hydrodynamic
(2.4), see (2.5). Since (2.4) has at most one weak solution, we conclude that π(t, u) = ρ(t, u)

Q-a.s., which ends the proof of Theorem 2.6.

4 Proof of Theorem 2.8

Denote by QN the distribution in D([0, T ],S ′(Ud)) induced by the process YN
t and νρ . The

standard proof of equilibrium fluctuations cannot be accomplished for the density field YN· .
In order to overcome this problem we introduce as before, the corrected density fluctuation
field defined on functions G ∈ S(Ud) by

YN,λ
t (G) = 1

Nd/2

∑

x∈T
Nd

Gλ
N(x)

(
ηt (x) − ρ

)
,

where Gλ
N is the solution of (3.1).

For t ≥ 0, let Ft be the σ -algebra on D([0, T ],S ′(Ud)) generated by Ys(H) for s ≤ t and
H in S(Ud) and set F = σ(

⋃
t≥0 Ft ). Denote by Qλ

N the distribution on D([0, T ],S ′(Ud))

induced by the corrected density fluctuation field YN,λ
. and νρ .

We make use of the following result, which permits to identify the limiting process:

Proposition 4.1 There exists a unique process Yt in C([0, T ],S ′(Ud)) such that:

(i) For every function G ∈ S(Ud),

Mt(G) = Yt (G) − Y0(G) −
∫ t

0
Ys

(
φ′(ρ)∇ ·A∇G

)
ds

and
(
Mt(G)

)2 − φ(ρ)t

∫

Ud

∇G(u) ·A∇G(u)du

are Ft -martingales.
(ii) Y0 is a Gaussian field of mean zero and covariance given by

E
[
Y0(G)Y0(H)

]= χ(ρ)

∫

Ud

G(u)H(u)du, (4.1)

where χ(ρ) = Var(η(0), νρ) and G, H ∈ S(Ud). The process Yt is called the gen-
eralized Ornstein-Uhlenbeck process of mean zero and characteristics φ′(ρ)∇ · A∇ ,√

φ(ρ)A∇ .

Theorem 2.8 is a consequence of the following result about the corrected fluctuation field.

Theorem 4.2 Let Q be the probability measure on C([0, T ],S ′(Ud)) corresponding to
the stationary generalized Ornstein-Uhlenbeck process of mean zero and characteristics
φ′(ρ)∇ · A∇ ,

√
φ(ρ)A∇ . Then the sequence {Qλ

N }N≥1 converges weakly to the probability
measure Q.

Before we enter into the proof of this theorem, we prove Theorem 2.8 from it. In fact, it
is enough to show that

lim
N→∞

Eνρ

[(
YN

t (G) − YN,λ
t (G)

)2]= 0 (4.2)
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for any t ∈ [0, T ], G ∈ S(Ud). But this is immediate from the fact that Gλ
N converges to G

in L2
N and the independence of η(x), η(y) for x �= y under the invariant measure νρ .

In order to prove Theorem 4.2, we need to verify that the sequence of probability mea-
sures {Qλ

N }N≥1 is tight and to characterize the limit field. Then we show that the limit field
is equal in distribution to Yt using its characterization in terms of the martingale problem
(Proposition 4.1).

Fix a smooth function G ∈ S(Ud). By Dynkin’s formula,

MN,λ
t (G) = YN,λ

t (G) − YN,λ
0 (G) −

∫ t

0

1

Nd/2

∑

x∈T
d
N

g
(
ηs(x)

)
LNGλ

N(x)ds (4.3)

is a martingale with respect to the natural filtration Ft = σ(ηs, s ≤ t) whose quadratic vari-
ation is given by

〈
MN,λ

t (G)
〉=
∫ t

0

1

Nd

∑

x,y∈T
d
N

g
(
ηs(x)

)
pN(x, y)

[
Gλ

N(y) − Gλ
N(x)

]2
ds.

At first, we establish the limit of the quadratic variation. Notice that in the previous
formula we can replace g(ηs(x)) by φ(ρ), since

Eνρ

[(∫ t

0

1

Nd

∑

x,y∈T
d
N

{
g
(
ηs(x)

)− φ(ρ)
}
pN(x, y)

[
Gλ

N(y) − Gλ
N(x)

]2
ds

)2]

≤ t2

N2d
Var(g, νρ)

∑

x,y∈T
d
N

pN(x, y)
[
Gλ

N(y) − Gλ
N(x)

]2

× sup
x∈T

d
N

∑

y∈T
d
N

pN(x, y)
[
Gλ

N(y) − Gλ
N(x)

]2

≤ Ct2

Nd−2
‖RλG‖2

0,N‖Rλ‖∞,N .

For dimension d ≥ 3, this last expression goes to 0 as N → ∞. In order to cover the
case d = 2, we can use Theorem 1.31 of [17], expression (1.32) with t = s and α = 1/N

and take the Laplace transform of (1.32), to obtain a sharper estimate for Gλ
N(x) − Gλ

N(y).
In this case, we obtain that the last line is bounded by N−(d−2+2σ), for some σ > 0. As a
consequence, for any d ≥ 2, the quadratic variation can be written as

∫ t

0

1

Nd

∑

x∈T
d
N

φ(ρ)
∑

y∈T
d
N

pN(x, y)
[
Gλ

N(y) − Gλ
N(x)

]2
ds,

plus a vanishing term in the L2(Pνρ )-norm. Using the convergence of Gλ
N in L2

N and the
resolvent estimates in the proof of Lemma B.1, this last integral converges to

tφ(ρ)

∫

U

∇G(u) ·A∇G(u)du,

as N goes to ∞.
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Now we study the limit of the martingale M
N,λ
t (G), see expression (4.3). Since∑

x∈T
d
N

LNGλ
N(x) = 0, we can rewrite the integral part of the martingale as

∫ t

0

1

Nd/2

∑

x∈T
d
N

{
g
(
ηs(x)

)− φ(ρ)
}
LNGλ

N(x)ds.

On the other hand, since Gλ
N is the solution of (3.1), the last integral can be written as

∫ t

0

1

Nd/2

∑

x∈T
d
N

{
g
(
ηs(x)

)− φ(ρ)
}{

λGλ
N(x) − λG(x) + ∇ ·A∇G(x)

}
ds.

Our aim now consists in showing that it is possible to write the integral part of the mar-
tingale as the integral of a function of the density fluctuation field plus a term that goes to
zero in L2(Pνρ ). The first result needed to proceed in that direction is the following:

Eνρ

[(∫ t

0

1

Nd/2

∑

x∈T
d
N

{
g
(
ηs(x)

)− φ(ρ)
}[

Gλ
N(x) − G(x)

]
ds

)2]

≤ C Var(g, νρ)‖Gλ
N − G‖2

0,N

N→∞−→ 0.

The second one is known as the Boltzmann-Gibbs principle. Here we have the need to
introduce some definitions. Take a function f : χ × �d

N → R. For each ω ∈ χ and each
x ∈ T

d
N , define

f (x, η) = f (x, η,ω) =: f (θxNω, τxη),

where τxη is the shift of η to x: τxη(y) = η(x + y). Notice that we do not include explicitly
the dependence of f (x, η) in ω, since in our setting ω is fixed.

Definition 4.3 We say that f is local if there exists R > 0 such that f (ω,η) depends only
on the values of η(y) for |y| ≤ R. In this case, we can consider f as defined in all the spaces
χ × �d

N for N ≥ R.

Definition 4.4 We say that f is Lipschitz if there exists c = c(ω) > 0 such that for all x,
|f (ω,η) − f (ω,η′)| ≤ c|η(x) − η′(x)| for any η, η′ such that η(y) = η′(y) for any y �= x.
If the constant c can be chosen independently of ω, we say that f is uniformly Lipschitz.

Theorem 4.5 (Boltzmann-Gibbs principle) For every G ∈ S(Ud), every t > 0 and every
local, uniformly Lipschitz function f : χ × �d

N → R,

lim
N→∞

Eνρ

[∫ t

0

1

Nd/2

∑

x∈T
d
N

G(x)Vf (x, ηs)ds

]2

= 0 (4.4)

where

Vf (x, η) = f (x, η) − Eνρ

[
f (x, η)

]− ∂ρE

[∫
f (x, η)dνρ(η)

](
η(x) − ρ

)
.

Here E denotes the expectation with respect to P , the random environment.
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In order to simplify the exposition, the proof of this last result is postponed to the next
section. As we need to write the integral part of the martingale M

N,λ
t (G) in terms of the

density fluctuation field, by using the first result stated above we are able to write the integral
part of the martingale as

∫ t

0

1

Nd/2

∑

x∈T
d
N

{
g
(
ηs(x)

)− φ(ρ)
}∇ ·A∇G(x)ds

plus a term that converges to 0 in the L2(Pνρ )-norm. The replacement of the function
g(ηs) − φ(ρ) by φ′(ρ)[ηs(x) − α] in the last integral, is possible thanks to the Boltzmann-
Gibbs principle. Doing so, the integral part of the martingale can be written as

MN,λ
t (G) = YN,λ

t (G) −YN,λ
0 (G) −

∫ t

0

1

Nd/2

∑

x∈T
d
N

φ′(ρ)∇ ·A∇G(x)
(
ηs(x) − ρ

)
ds

plus a term that vanishes in L2(Pνρ ) as N → ∞. Notice that the integrand in the previous
expression is a function of the density fluctuation field YN

t , see (2.6). By (4.2), we can
replace inside the integral of last expression the density fluctuation field YN

t by the corrected
density fluctuation field YN,λ

t .
Suppose that the sequence {Qλ

N }N≥1 is tight and let Qλ be a limit point of it. Denote by
Yt the process in D([0, T ],S ′(Ud)) induced by the canonical projections under Qλ. Taking
the limit as N → ∞ under an appropriate subsequence in expression (4.3), we obtain that

Mλ
t (G) = Yt (G) −Y0(G) −

∫ t

0
Ys

(
φ′(ρ)∇ ·A∇G

)
ds

is a martingale of quadratic variation

tφ(ρ)

∫

Ud

∇G(u) ·A∇G(u)du.

On the other hand, it is not hard to show that Y0 is a Gaussian field with covariance given
by (4.1). Therefore, Qλ is equal to the probability distribution Q of a generalized Ornstein-
Uhlenbeck process in C([0, T ],S ′(Ud)) (and it does not depend on λ). As a consequence,
the sequence {Qλ

N }N≥1 has at most one limit point and Theorem 4.2 shall follow if we prove
tightness for {Qλ

N }N≥1.
Lastly, it remains to treat the problem of tightness of the sequence {Qλ

N }N≥1. For that
we use a criterion due to Mitoma [12] (see also [6]), which allows to conclude that the se-
quence is tight and that any weak limit is supported in C([0, T ], S ′(Ud)), since the following
estimates hold:

(a) For every T > 0 and G ∈ S(Ud),

sup
N

sup
t∈[0,T ]

Eνρ

[
YN,λ

t (G)
]2

< ∞,

sup
N

sup
t∈[0,T ]

Eνρ

[
1

Nd/2

∑

x∈T
d
N

φ′(ρ)∇ ·A∇G(x)
(
ηs(x) − ρ

)]2

< ∞,

sup
N

sup
t∈[0,T ]

Eνρ

[
1

Nd/2

∑

x∈T
d
N

φ(ρ)
∑

y∈T
d
N

pN(x, y)
[
Gλ

N(y) − Gλ
N(x)

]2
]2

< ∞.
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(b) For every G ∈ S(Ud) there exists δ(t,G,N) such that limN→∞ δ(t,G,N) = 0 and

lim
N

Pνρ

(
sup

0≤s≤t

∣∣YN,λ
s (G) −YN,λ

s− (G)
∣∣> δ(t,G,N)

)
= 0.

The first expectation in (a) is bounded by ‖Gλ
N‖∞χ(ρ), which in turn is bounded by

C‖RλG‖∞. The second expectation in (a) is bounded by C‖∇ · A∇G‖2
2 and the last one

bounded by C‖RλG‖4
2.

To prove (b) we only have to remark that by definition of the process it holds that

sup0≤s≤t |YN,λ
s (G) − YN,λ

s− (G)| ≤ ‖Gλ
N

‖∞
Nd/2 .

By the results proved {Qλ
N }n≥1 is tight and we have identified above a unique limit point

Q that corresponds to the Ornstein-Uhlenbeck process; consequently the whole sequence
converges to Q.

5 Boltzmann-Gibbs Principle

This section is devoted to the proof of Theorem 4.5. Let f : χ × �d
N → +∞ be a local,

uniformly Lipschitz function and take f (x, η) = f (θNxω, τxη).
Fix a function G ∈ S(Ud) and an integer K that shall increase to ∞ after N . For

each N , we subdivide T
d
N in non overlapping cubes of linear size K . Denote them by

{Ij ,1 ≤ j ≤ Md}, where M = [ 2N
K

]. Let I0 be the set of points that are not included in any
Ij which implies that |Ij | ≤ dKNd−1. If we restrict the sum in the expression that appears
inside the integral in (4.4) to the set I0, then its L2(Pνρ ) norm clearly vanishes as N → +∞.

Let �sf be the smallest cube centered at the origin that contains the support of f and
define sf as the radius of �sf . Denote by I 0

j the interior of the interval Ij , namely the sites
x in Ij that are at a distance at least sf from the boundary:

I 0
j = {x ∈ Ij , d(x,T

d
N \ Ij ) > sf

}
.

Denote also by I c the set of points that are not included in any I 0
j . By construction it is

easy to see that |I c| ≤ dNd(
c(g)

K
+ K

N
). Using the notation just settled, we have that

1

Nd/2

∑

x∈T
d
N

H(x)Vf (x, ηt )

= 1

Nd/2

∑

x∈I c

H(x)Vf (x, ηt ) + 1

Nd/2

Md∑

j=1

∑

x∈I0
j

[
H(x) − H(yj )

]
Vf (x, ηt )

+ 1

Nd/2

Md∑

j=1

H(yj )
∑

x∈I0
j

Vf (x, ηt ),

where yj is a point in Ij . We assume that the points yj have the same relative position on
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each of the cubes. The first step is to prove that

lim
K→∞

lim
N→∞

Eνρ

[∫ t

o

1

Nd/2

∑

x∈I c

H(x)Vf (x, ηt )ds

]2

= 0.

Applying Schwarz inequality, since νρ is an invariant product measure and since Vf has
mean zero with respect to the measure νρ , the last expectation is bounded above by

t2

Nd

∑

x,y∈I c

|x−y|≤2sf

H(x)H(y)Eνρ

[
Vf (x, η)Vf (y, η)

]
.

Since Vf belongs to L2(νρ) and |I c| ≤ dNd(
c(f )

K
+ K

N
), the last expression vanishes by

taking first N → +∞ and then K → +∞.
Applying the same arguments, it is not hard to show that

lim
N→∞

Eνρ

[∫ t

0

1

Nd/2

Md∑

j=1

∑

x∈I0
j

[
H(x) − H(yj )

]
Vf (x, ηt )ds

]2

= 0.

In order to finish the proof it remains to show that

lim
K→∞

lim
N→∞

Eνρ

[∫ t

0

1

Nd/2

Md∑

j=1

H(yj )
∑

x∈I0
j

Vf (x, ηt )ds

]2

= 0.

Let LN be the generator of the zero-range process without the random environment (that
is, taking a(ω) ≡ 1 in (2.3)), and without the diffusive scaling N2. For each j = 0, . . . ,Md

denote by ζj the configuration {η(x), x ∈ Ij } and by LIj the restriction of the generator LN

to the interval Ij , namely:

LIj h(η) =
∑

x,y∈Ij
|x−y|=1/N

g
(
η(x)

)[
h(ηx,y) − h(η)

]
.

We point out here that we are introducing a slightly different generator than the one that
generates the dynamics, namely LN . The reason for doing this stands on the fact that the
dynamics generated by this operator is translation invariant. The generator that we choose
to introduce here is not random, but due to the ellipticity assumption on the environment, it
is mutually bounded with the one that we have started with.

Now we introduce some notation. Fix a local function h : χ ×�d
N → R, measurable with

respect to σ(η(x), x ∈ I1), such that E[∫ h(ω,η)2dνρ] < ∞ and let hj be the translation
of h by yj − y0: hj (x, η) = h(θ(yj −y0)Nω, τyj −y0η). Denote by L2(νρ × P ) the set of such
functions. Consider

V N
H,h(η) = 1

Nd/2

Md∑

j=1

H(yj )LIj hj (ζj ).
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By Proposition A 1.6.1 of [11] and the ellipticity assumption, it is not hard to show
that

Eνρ

[∫ t

0

1

Nd/2

Md∑

j=1

H(yj )LIj hj

(
ζj (s)

)
ds

]2

≤ 20ε−1
0 t‖|V N

H,h‖|2−1,

where the norm ‖| · ‖|−1 is given by the variational formula

‖|V N
H,h‖|2−1 = sup

F∈L2(νρ )

{
2
∫

V N
H,h(η)F (η)dνρ − N2〈F,−LNF 〉ρ

}
, (5.1)

where 〈·, ·〉ρ denotes the inner product in L2(νρ).
By the Cauchy-Schwarz inequality,

∫
LIj hj (ζj )F (η)dνρ ≤ 1

2γj

〈−LIj hj , hj 〉ρ + γj

2
〈F,−LIj F 〉ρ

for each j , where γj is a positive constant. Therefore,

2
∫

V N
H,h(η)F (η)dνρ ≤ 2

Nd/2

Md∑

j=1

H(yj )

{
1

2γj

〈−LIj hj , hj 〉ρ + γj

2
〈F,−LIj F 〉ρ

}
.

Taking for each j , γj = N2+ d
2 |H(yj )|−1 we have that

2

Nd/2

Md∑

j=1

∣∣H(yj )
∣∣γj

2
〈F,−LIj F 〉ρ ≤ N2〈F,−LNF 〉ρ,

and the expectation becomes bounded by

20ε−1
0 t

Nd/2

Md∑

j=1

|H(yj )|
γj

〈−LIj hj , hj 〉ρ ≤ 20tMd‖H‖∞
ε2

0N
2+d

Md∑

j=1

1

Md
〈−Lj hj , hj 〉ρ.

By the ergodic theorem, the sum in the previous expression converges as N → ∞ to a
finite value and therefore this last expression vanishes as N → ∞. To conclude the proof of
the theorem we need to show that

lim
K→∞

inf
h∈L2(νρ×P)

lim
N→∞

Eνρ

[∫ t

0

1

Nd/2

Md∑

j=1

H(yj )

{∑

x∈I0
j

Vf (x, ηs) − LIj hj

(
ζj (s)

)}
]2

= 0.

By Schwarz inequality the expectation in the previous expression is bounded by

t2

Nd

Md∑

j=1

‖H‖2
∞Eνρ

(∑

x∈I0
j

Vf (x, η) − LIj hj (ζj )

)2

because the measure νρ is invariant under the dynamics and also translation invariant and
the supports of Vf (x, η) − LIi hi(ζi) and Vf (y, η) − LIj hj (ζj ) are disjoint for x ∈ I 0

i and
y ∈ I 0

j , with i �= j .
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By the ergodic theorem, as N → ∞ this expression converges to

t2

Kd
‖H‖2

∞E

[∫ (∑

x∈I0
1

Vf (x, η) − LI1h(ω,η)

)2

dνρ

]
. (5.2)

So it remains to show that

lim
K→∞

t2

Kd
‖H‖2

∞ inf
h∈L2(νρ×P)

E

[∫ (∑

x∈I0
1

Vf (x, η) − LI1h(ω,η)

)2

dνρ

]
= 0.

Denote by R(LI1) the range of the generator LI1 in L2(νρ × P ) and by R(LI1)
⊥ the

space orthogonal to R(LI1). The infimum of (5.2) over all h ∈ L2(νρ × P ) is equal to the
projection of

∑
x∈I0

1
Vf (x, η) into R(LI1)

⊥.

It is not hard to show that R(LI1)
⊥ is the space of functions that depends on η only

through the total number of particles on the box I1. So, the previous expression is equal
to

lim
K→∞

t2‖H‖2∞
Kd

E

[∫ (
Eνρ

[∑

x∈I0
1

Vf (x, η)|ηI1

])2

dνρ

]
(5.3)

where ηI1 = K−d
∑

x∈I1
η(x).

Let us call this last expression I0. Define ψ(x,ρ) = Eνρ [f (θxω)]. Notice that Vf (x, η) =
f (x, η) − ψ(x,ρ) − E[ψ ′(x,ρ)](η(x) − ρ), since in the last term the derivative commutes
with the expectation with respect to the random environment. In order to estimate the ex-
pression (5.3) using the elementary inequality (x + y)2 ≤ 2x2 + 2y2, we split it into three
pieces: I0 ≤ 4(I1 + I2 + I3), where

I1 = 1

Kd
E

[∫ (∑

x∈I0
1

Eνρ

[
f (x, η)|ηI1

]− ψ(x,ηI1)

)2

dνρ

]
,

I2 = 1

Kd
E

[∫ (∑

x∈I0
1

ψ(x,ηI1) − ψ(x,ρ) − ψ ′(x,ρ)[ηI1 − ρ]
)2

dνρ

]
,

I3 = 1

Kd
E

[
Eνρ

[(∑

x∈I0
1

(
ψ ′(x,ρ) − E

[
ψ ′(x,ρ)

])[ηI1 − ρ]
)2]]

.

We will make use of the following lemma, known as the equivalence of ensembles.

Lemma 5.1 Let h : �d
N → R a local, uniformly Lipschitz function. Then, for each

β ≥ 0 there exists a constant C that depends on h only through its support and its Lip-
schitz constant, such that

∣∣Eνρ

[
h(η)|ηN

]− Eν
ηN

[
h(η)

]∣∣≤ C

Nd
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whenever ρ,ηN ≤ β , where

ηN =
∑

|x|≤N

η(x).

In order to estimate I1 and I2, we introduce the indicator functions 1(ηI1 ≤ β). By a large
deviations estimate, νρ(η

I1 ≥ β) ≤ exp(−C(β)Kd). Since f is Lipschitz, it has bounded ex-
ponential moments of any order and a simple Schwarz estimate shows that we can introduce
the indicator function 1(ηI1 ≤ β) into the integrals in I1 and I2. By Lemma 5.1,

1

Kd
E

[∫ (∑

x∈I0
1

Eνρ

[
f (x, η)|ηI1

]− ψ(x,ηI1)

)2

1(ηI1 ≤ β)dνρ

]
≤ C

Kd
,

which vanishes as K → ∞.
Using a Taylor expansion for ψ(x,ρ), we see that

1

Kd
E

[∫ (∑

x∈I0
1

ψ(x,ηI1) − ψ(x,ρ) − ψ ′(x,ρ)[ηI1 − ρ]
)2

dνρ

]
≤ C

Kd

and also goes to 0 as K → ∞.
Finally, we see that

I3 = Eνρ

[(
η(0) − ρ

)2] · E
[(

1

Kd

∑

x

(
ψ ′(x,ρ) − E

[
ψ ′(x,ρ)

]))2]

and it goes to 0 as K → ∞ by the L2-ergodic theorem.

5.1 Some Applications of the Boltzmann-Gibbs Principle

In the proof of Theorem 2.8, we need to use the Boltzmann-Gibbs Principle 4.5 for the
function g(η(0)), that does not depend on the random environment. In particular, the results
of the previous section are not needed in the proof of Theorem 2.8, since the proof for the
non-random case applies directly for functions that do not depend on the random environ-
ment. We point out here two applications for the Boltzmann-Gibbs principle as stated in
Theorem 4.5.

First Application Consider, for simplicity, some local, bounded and uniformly Lipschitz
function f (ω,η) that does not depend on the value of η(0). For each η ∈ �N , define

�+
x η(z) =

{
η(x) + 1, z = x,

η(z), z �= x,

�−
x η(z) =

{
η(x) − 1, z = x,

η(z), z �= x.

Notice that �−
x η is well defined only if η(x) ≥ 1. We can define a reaction-diffusion model

adding to the zero-range dynamics a Glauber dynamics as follows:

Lrd
N F (η) =: N2LN +

∑

x∈T
d
N

f (x, η)
[
F(�+

x η) − F(η)
]
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+
∑

x∈T
d
N

α(ρ)
f (x,�−

x η)

g(η(x))

[
F(�−

x η) − F(η)
]
,

where we define f (x,�−
x η)/g(η(x)) = 0 if η(x) = 0. We have chosen the annihilation rate

in such a way that the measure νρ is invariant for this process. Therefore, we can obtain the
equilibrium fluctuations for this model as in Sect. 4.

Second Application This one has to do with the convergence of additive functionals of
Markov processes. For each f satisfying the conditions of Theorem 4.5, define the density
fluctuation field for f acting on functions G ∈ S(Ud) as

ZN,f
t (G) = 1

Nd/2

∑

x∈T
d
N

G(x)
{
f (x, ηs) − Eνρ

[
f (x, η)

]}
.

Note that for f (x, η) = η(x)−ρ, the density fluctuation field for f is the density fluctuation
field introduced above and denoted by YN

s (G).
For fixed f as above, define the additive functional

IN
f (t) =

∫ t

0
ZN

t (G)ds.

Then, by Theorems 2.8 and 4.5,

lim
N→∞

IN
f (t) = ∂ρE

[∫
f (ω,η)dνρ

]∫ t

0
Ys(G)ds in distribution.

Appendix A: Some Estimates for ηt

A.1 Entropy Production

Denote by μN(t) = SN
t μN the distribution of ηt in �d

N under PμN
and define f N

t = dμN (t)

dνρ̄
.

The density f N
t satisfies the Kolmogorov equation

d

dt
f N

t (η) = LNf N
t (η).

For each density f : �d
N → R+, define the Dirichlet form DN(f ) by

DN(f ) =
∑

x,y∈TN|x−y|=1/N

∫
g
(
η(x)

)[√
f (ηxy) −√f (η)

]2
dνρ̄,

and the entropy HN(f ) = ∫ f logf dνρ̄ . By the ellipticity assumption in pN(x, y), the en-
tropy production is bounded by the Dirichlet form of f N

t [11]:

d

dt
HN(f N

t ) ≤ −2ε0N
2DN(f N

t ).
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Assume that HN(μN |νρ̄) ≤ K0N
d , or in other words that HN(f N

0 ) ≤ K0N
d . Since the

Dirichlet form and the entropy are convex functions of f , integrating the previous inequality
we obtain the bounds

HN(f̄ N
T ) ≤ K0

T
Nd, DN(f̄ N

T ) ≤ K0

2ε0T
Nd−2,

where

f̄ N
T (η) = 1

T

∫ T

0
f N

t (η)dt.

A.2 Attractiveness of ηt

Take two probability measures μ, ν in �N such that μ � ν. When the jump rate g(·) is
non-decreasing, it is possible to construct a process (ηt , η

′
t ) in �N × �N , starting from a

coupling μ̄ of μ and ν, such that for every t ∈ [0, T ]
(i) The distribution of ηt in D([0, T ],�N) is equal to Pμ.

(ii) The distribution of η′
t in D([0, T ],�N) is equal to Pν .

(iii) The distribution of (ηt , η
′
t ) in D([0, T ],�N × �N) is concentrated on the set {(η, η′) ∈

�N × �N ;η � η′}.
In this case the process ηt is said to be attractive. We say that a function h : �d

N → R is
non-decreasing if for η � η′ then h(η) ≤ h(η′). The following proposition is an immediate
consequence of the existence of the process (ηt , η

′
t ).

Proposition A.1 Let μ, ν be two probability measures in �d
N such that μ � ν. Let h :

�d
N → R be a non-decreasing function. Then,

Eμ

[
h(ηt )

]≤ Eν

[
h(ηt )

]

for all t ∈ [0, T ].

A.3 An L2 Estimate for ηt

Consider the process ηt starting from the equilibrium measure νρ . Define the L2
N -norm of

ηt by

‖ηt‖2
0,N = 1

Nd

∑

x∈TN

ηt (x)2.

By Dynkin’s formula,

MN
t = ‖ηt‖2

0,N − ‖η0‖2
0,N −

∫ t

0
LN‖ηs‖2

0,Nds (A.1)

is a martingale of quadratic variation

〈MN
t 〉 =

∫ t

0
‖ηs‖2

0,N (−LN)‖ηs‖2
0,Nds.
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Explicit computations show that Eνρ [〈MN
t 〉] ≤ C/Nd−2. Therefore, by Doob’s inequal-

ity,

Eνρ

[
sup

t∈[0,T ]
|MN

t |2
]

≤ C/Nd−2.

For the integral term in (A.1), we have the following estimate:

Eνρ

[(
sup

t∈[0,T ]

∫ t

0
LN‖ηs‖2

0,Nds

)2]
≤ CtEνρ

[‖η‖2
0,N (−LN)‖η‖2

0,N

]
.

Therefore, for dimension d ≥ 2, we conclude that Eνρ [supt ‖ηt‖2
0,N ] is uniformly

bounded in N . Since ‖η‖2
0,N is an increasing function, we have proved the following re-

sult:

Lemma A.2 Fix ρ > 0. Let {μN }N≥1 be a sequence of measures such that μN � νρ for
all N . Then,

sup
N∈N

EμN

[
sup

t∈[0,T ]
‖ηt‖2

0,N

]
< +∞.

Appendix B: Functional Analysis in the Spaces L2
N , H1,N

B.1 Convergence in L2
N , H1,N

Fix f ∈ H1,N . We define the linear interpolation T 1
Nf of f as follows. To fix ideas, take

d = 3. We divide each of the cubes of size 1/N in T
d
N into six tetrahedrons with vertices

in T
d
N . The way we do this is not important, but we do it in the same way for every cube

in T
d
N .

For a point u in one of such tetrahedrons, we define T 1
Nf (u) as the linear interpolation

of the values of f on the vertices of the tetrahedron. In this way we have defined a function
T 1

Nf in H1(U
d).

We say that fN ∈ H1,N converges strongly (resp. weakly) in H1,N to f ∈ H1(U
d) if

lim
N→∞

T 1
NfN = f strongly (resp. weakly) in H1(U

d).

In an analogous way, for each u ∈ Ud we define T 0
Nf (u) = f (x) if |u − x| ≤ 1/2N .

We say that fN converges strongly (resp. weakly) in L2
N to f ∈ L2(Ud) if T 0

NfN converges
strongly (resp. weakly) to f in L2(Ud).

A sequence fN ∈ H−1,N converges to f ∈ H−1(U
d) strongly (resp. weakly) if for any

sequence gN ∈ H1,N and g ∈ H1(U
d) such that gN → g weakly in (resp. strongly) H1,N we

have

lim
N→∞

〈fN,gN 〉N = 〈f,g〉.

B.2 Resolvent Estimates

Let f be a regular function and let uN be the solution of the resolvent equation

λuN(x) − LNuN(x) = f (x). (B.1)
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Lemma B.1 There exists a constant c = c(λ) such that

max
{‖uN‖0,N ,‖uN‖1,N

}≤ c‖f ‖1.

Proof By Lax-Milgram’s lemma, this equation has a unique solution in H1,N . Taking the
inner product of (B.1) with respect to uN , we see that

λ‖uN‖2
0,N + 〈uN,−LNuN 〉N ≤ 〈f,uN 〉N .

By the Cauchy-Schwarz inequality, |〈f,uN 〉N ≤ ‖uN‖0,N‖f ‖0,N . Using the ellipticity
assumption, we obtain the estimates

‖uN‖0,N ≤ λ−1‖f ‖0,N ,

‖uN‖2
1,N ≤ [(λε0)

−1 + λ−2
]‖f ‖2

0,N .

By the finite elements theory [1], there exists a constant γ independent of N such
that for every f ∈ H1(U

d), ‖f ‖0,N ≤ γ ‖f ‖1. Therefore, it is enough to take c =
γ max{λ−1, (λε0)

−1 + λ−2}. �

Since the operator LN is the generator of a random walk in T
d
N , the solutions of (B.1)

satisfy the maximum principle:

inf
x∈T

d
N

λ−1f (x) ≤ inf
x∈T

d
N

uN(x) ≤ inf
x∈T

d
N

uN(x) ≤ sup
x∈T

d
N

λ−1f (x).

In particular, for f continuous, ‖uN‖∞ ≤ λ−1‖f ‖∞.
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